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Abstract. Embedded distributed systems have become an integral part of safety-
critical computing applications, necessitating system designs that incorporate fault
tolerant clock synchronization in order to achieve ultra-reliable assurance levels.
Many efficient clock synchronization protocols do not, however, address Byzantine
failures, and most protocols that do tolerate Byzantine failures do not self-stabilize.
Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the
literature, they are based on either unjustifiably strong assumptions about initial
synchrony of the nodes or on the existence of a common pulse at the nodes.  The
Byzantine self-stabilizing clock synchronization protocol presented here does not
rely on any assumptions about the initial state of the clocks.  Furthermore, there is
neither a central clock nor an externally generated pulse system.  The proposed
protocol converges deterministically, is scalable, and self-stabilizes in a short
amount of time.  The convergence time is linear with respect to the self-stabilization
period.  Proofs of the correctness of the protocol as well as the results of formal
verification efforts are reported.
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1 Introduction

Synchronization and coordination algorithms are part of distributed computer systems.
Clock synchronization algorithms are essential for managing the use of resources and
controlling communication in a distributed system.  Also, a fundamental criterion in the
design of a robust distributed system is to provide the capability of tolerating and
potentially recovering from failures that are not predictable in advance.  Overcoming such
failures is most suitably addressed by tolerating Byzantine faults [1].  A Byzantine-fault
model encompasses all unexpected failures, including transient ones, within the
limitations of the maximum number of faults at a given time.  Driscoll et al. [2] addressed
the frequency of occurrences of Byzantine faults in practice and the necessity to tolerate
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Byzantine faults in ultra-reliable distributed systems.  A distributed system tolerating as
many as F Byzantine faults requires a network size of more than 3F nodes.  Lamport et al.
[1, 3] were the first to present the problem and show that Byzantine agreement cannot be
achieved for fewer than 3F +1 nodes.  Dolev et al. [4] proved that at least 3F + 1 nodes
are necessary for clock synchronization in the presence of F Byzantine faults.

A distributed system is defined to be self-stabilizing if, from an arbitrary state and in
the presence of bounded number of Byzantine faults, it is guaranteed to reach a legitimate
state in a finite amount of time and remain in a legitimate state as long as the number of
Byzantine faults are within a specific bound.  A legitimate state is a state where all good
clocks in the system are synchronized within a given precision bound.  Therefore, a self-
stabilizing system is able to start in a random state and recover from transient failures
after the faults dissipate.  The concept of self-stabilizing distributed computation was first
presented in a classic paper by Dijkstra [5].  In that paper, he speculated whether it would
be possible for a set of machines to stabilize their collective behavior in spite of unknown
initial conditions and distributed control.  The idea was that the system should be able to
converge to a legitimate state within a bounded amount of time, by itself, and without
external intervention.

This paper addresses the problem of synchronizing clocks in a distributed system in the
presence of Byzantine faults.  There are many algorithms that address permanent faults
[6], where the issue of transient failures is either ignored or inadequately addressed.
There are many efficient Byzantine clock synchronization algorithms that are based on
assumptions on initial synchrony of the nodes [6, 7] or existence of a common pulse at the
nodes, e.g. the first protocol in [8].  There are many clock synchronization algorithms that
are based on randomization and, therefore, are non-deterministic, e.g. the second protocol
in [8].  Some clock synchronization algorithms have provisions for initialization and/or
reintegration [7, 9].  However, solving these special cases is insufficient to make the
algorithm self-stabilizing.  A self-stabilizing algorithm encompasses these special
scenarios without having to address them separately.  The main challenges associated with
self-stabilization are the complexity of the design and the proof of correctness of the
protocol.  Another difficulty is achieving efficient convergence time for the proposed self-
stabilizing protocol.

Other recent developments in this area are the algorithms developed by Daliot et al [10,
11].  The algorithm in [11] is called the Byzantine self-stabilization pulse synchronization
(BSS-Pulse-Synch) protocol.  A flaw in BSS-Pulse-Synch protocol was found and
documented in [12].  The biologically inspired Pulse Synchronization protocol in [10] has
claims of self-stabilization, but no mechanized1 proofs are provided.

In this paper a rapid Byzantine self-stabilizing clock synchronization protocol is
presented that self-stabilizes from any state, tolerates bursts of transient failures, and
deterministically converges within a linear convergence time with respect to the self-
stabilization period.  Upon self-stabilization, all good clocks proceed synchronously.  This

                                                          
1 A mechanized proof is a formal verification via either a theorem prover or model checker.
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protocol has been the subject of rigorous verification efforts that support the claim of
correctness.

2 Topology

The underlying topology considered here is a network of K nodes that communicate by
exchanging messages through a set of communication channels.  The communication
channels are assumed to connect a set of source nodes to a set of destination nodes such
that the source of a given message is distinctly identifiable from other sources of
messages.  This system of K nodes can tolerate a maximum of F Byzantine faulty nodes,
where K ≥ 3F +1.  Therefore, the minimum number of good nodes in the system, G, is
given by G = K-F and thus G ≥ (2F + 1) nodes.  Let KG represent the set of good nodes.
The nodes communicate with each other by exchanging broadcast messages.  Broadcast of
a message to all other nodes is realized by transmitting the message to all other nodes at
the same time.  The source of a message is assumed to be uniquely identifiable.  The
communication network does not guarantee any order of arrival of a transmitted message
at the receiving nodes.  To paraphrase Kopetz [13], a consistent delivery order of a set of
messages does not necessarily reflect the temporal or causal order of the events.  Each
node is driven by an independent local physical oscillator.  The oscillators of good nodes
have a known bounded drift rate, 1 >>ρ ≥ 0, with respect to real time.  Each node has two
logical time clocks, Local_Timer and State_Timer, which locally keep track of the passage
of time as indicated by the physical oscillator.  In the context of this report, all references
to clock synchronization and self-stabilization of the system are with respect to the
State_Timer and the Local_Timer of the nodes.  There is neither a central clock nor an
externally generated global pulse.  The communication channels and the nodes can behave
arbitrarily, provided that eventually the system adheres to the system assumptions (see
Section 3.5).

The latency of interdependent communications between the nodes is expressed in terms
of the minimum event-response delay, D, and network imprecision, d.  These parameters
are described with the help of Figure 1.  In Figure 1, a message transmitted by node Ni at
real time t0 is expected to arrive at all destination nodes Nj, be processed, and subsequent
messages generated by Nj within the time interval of [t0 + D, t0 + D + d] for all Nj ∈ KG.
Communication between independently clocked nodes is inherently imprecise.  The
network imprecision, d, is the maximum time difference between all good receivers, Nj, of
a message from Ni with respect to real time.  The imprecision is due to the drift of the
clocks with respect to real time, jitter, discretization error, and slight variations in the
communication delay due to various causes such as temperature effects and differences in
the lengths of the physical communication medium.  These two parameters are assumed to
be bounded such that D ≥ 1 and d ≥ 0 and both have values with units of real time nominal
tick.  For the remainder of this report, all references to time are with respect to the
nominal tick and are simply referred to as clock ticks.
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Fig. 1.   Event-response delay, D, and network imprecision, d.

3 Protocol Description

The self-stabilization problem has two facets.  First, it is inherently event-driven and,
second, it is time-driven.  Most attempts at solving the self-stabilization problem have
focused only on the event-driven aspect of this problem.  Additionally, all efforts toward
solving this problem must recognize that the system undergoes two distinct phases, un-
stabilized and stabilized, and that once stabilized, the system state needs to be preserved.
The protocol presented here properly merges the time and event driven aspects of this
problem in order to self-stabilize the system in a gradual and yet timely manner.
Furthermore, this protocol is based on the concept of a continual vigilance of state of the
system in order to maintain and guarantee its stabilized status, and a continual
reaffirmation of nodes by declaring their internal status.  Finally, initialization and/or
reintegration are not treated as special cases.  These scenarios are regarded as inherent part
of this self-stabilizing protocol.

The self-stabilization events are captured at a node via a selection function that is based
on received valid messages from other nodes.  When such an event occurs, it is said that a
node has accepted or an accept event has occurred.  When the system is stabilized, it is
said to be in the steady state.

In order to achieve self-stabilization, the nodes communicate by exchanging two self-
stabilization messages labeled Resync and Affirm.  The Resync message reflects the
time-driven aspect of this self-stabilization protocol, while the Affirm message reflects the
event-driven aspect of it.  The Resync message is transmitted when a node realizes that the
system is no longer stabilized or as a result of a resynchronization timeout.  The Affirm
message is transmitted periodically and at specific intervals primarily in response to a
legitimate self-stabilization accept event at the node.  The Affirm message either indicates
that the node is in the transition process to another state in its attempt toward
synchronization, or reaffirms that the node will remain synchronized.  The timing diagram
of transmissions of a good node during the steady state is depicted in Figure 2, where
Resync messages are represented as R and Affirm messages are represented as A.  As
depicted, the expected sequence of messages transmitted by a good node is a Resync
message followed by a number of Affirm messages, i.e. RAAA … AAARAA.
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Fig. 2.  Timing diagram of transmissions of a good node during the steady state.

The time difference between the interdependent consecutive events is expressed in
terms of the minimum event-response delay, D, and network imprecision, d.  As a result,
the approach presented here is expressed as a self-stabilization of the system as a function
of the expected time separation between the consecutive Affirm messages, ∆AA.  To
guarantee that a message from a good node is received by all other good nodes before a
subsequent message is transmitted, ∆AA is constrained such that ∆AA ≥ (D + d).  Unless
stated otherwise, all time dependent parameters of this protocol are measured locally and
expressed as functions of ∆AA.  In the steady state, Ni receives one Affirm message from
every good node between any two consecutive Affirm messages it transmits.  Since the
messages may arrive at any time after the transmission of an Affirm message, the accept
event can occur at any time prior to the transmission of the next Affirm message.

Three fundamental parameters characterize the self-stabilization protocol presented
here, namely K, D, and d.  The bound on the number of faulty nodes, F, the number of
good nodes, G, and the remaining parameters that are subsequently enumerated are
derived parameters and are based on these three fundamental parameters.  Furthermore,
except for K, F, and G which are integer numbers, all other parameters are real numbers.
In particular, ∆AA is used as a threshold value for monitoring of proper timing of incoming
and outgoing Affirm messages.  The derived parameters TA = G - 1 and TR = F + 1 are used
as thresholds in conjunction with the Affirm and Resync messages, respectively.

3.1 The Monitor

The transmitted messages to be delivered to the destination nodes are deposited on
communication channels.  To closely observe the behavior of other nodes, a node employs
(K-1) monitors, one monitor for each source of incoming messages as shown in Figure 3.

A node neither uses nor monitors its own messages.  The distributed observation of
other nodes localizes error detection of incoming messages to their corresponding
monitors, and allows for modularization and distribution of the self-stabilization protocol
process within a node.  A monitor keeps track of the activities of its corresponding source
node.  A monitor detects proper sequence and timeliness of the received messages from its
corresponding source node.  A monitor reads, evaluates, time stamps, validates, and stores
only the last message it receives from that node.  Additionally, a monitor ascertains the
health condition of its corresponding source node by keeping track of the current state of
that node.  As K increases so does the number of monitors instantiated in each node.
Although similar modules have been used in engineering practice and, conceptually, by
others in theoretical work, as far as the author is aware this is the first use of the monitors
as an integral part of a self-stabilization protocol.
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Fig. 3.  The ith node, Ni, with its monitors and state machine.

3.2 The State Machine

The assessment results of the monitored nodes are utilized by the node in the self-
stabilization process.  The node consists of a state machine and a set of (K-1) monitors.
The state machine has two states, Restore state (T) and Maintain state (M), that reflect
the current state of the node in the system as shown in Figure 4.  The state machine
describes the behavior of the node, Ni, utilizing assessment results from its monitors, M1 ..
Mi-1, Mi+1 .. MK as shown in Figure 3, where Mj is the monitor for the corresponding node
Nj.  In addition to the behavior of its corresponding source node, a monitor’s internal
status is influenced by the current state of the node’s state machine.  In a master-slave
fashion, when the state machine transitions to another state it directs the monitors to
update their internal status.

A

MT
R

R, A A

Fig. 4.  The node state machine.

The transitory conditions enable the node to migrate to the Maintain state and are
defined as:
1. The node is in the Restore state,
2. At least 2F accept events in as many ∆AA intervals have occurred after the node entered

the Restore state,
3. No valid Resync messages are received for the last accept event.
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The transitory delay is the length of time a node stays in the Restore state.  The
minimum required duration for the transitory delay is 2F∆AA after the node enters the
Restore state.  The maximum duration of the transitory delay is dependent on the number
of additional valid Resync messages received.  Validity of received messages  is  defined
in  Section 3.3.  When the system is stabilized, the maximum delay is a result of receiving
valid Resync messages from all faulty nodes.  Since there are at most F faulty nodes
present, during the steady state operation the duration of the transitory delay is bounded
by  [2F∆AA, 3F∆AA].

A node in either of the Restore or Maintain state periodically transmits an Affirm
message every ∆AA.  When in the Restore state, it either will meet the transitory conditions
and transition to the Maintain state, or will remain in the Restore state for the duration of
the self-stabilization period until it times out and transmits a Resync message.  When in
the Maintain state, a node either will remain in the Maintain state for the duration of the
self-stabilization period until it times out, or will unexpectedly transition to the Restore
state because TR other nodes have transitioned out of the Maintain state.  At the transition,
the node transmits a Resync message.

The self-stabilization period is defined as the maximum time interval (during the steady
state) that a good node engages in the self-stabilization process.  In this protocol the self-
stabilization period depends on the current state of the node.  Specifically, the self-
stabilization period for the Restore state is represented by PT and the self-stabilization
period for the Maintain state is represented by PM.   PT and PM are expressed in terms of
∆AA.  Although a Resync message is transmitted immediately after the node realizes that it
is no longer stabilized, an Affirm message is transmitted once every ∆AA.

A node keeps track of time by incrementing a logical time clock, State_Timer, once
every ∆AA.  After the State_Timer reaches PT or PM, depending on the current state of the
node, the node experiences a timeout, transmits a new Resync message, resets the
State_Timer, transitions to the Restore state, and attempts to resynchronize with other
nodes.  If the node was in the Restore state it remains in that state after the timeout.  The
current value of this timer reflects the duration of the current state of the node.  It also
provides insight in assessing the state of the system in the self-stabilization process.  In
addition to the State_Timer, the node maintains the logical time clock Local_Timer.  The
Local_Timer is incremented once every ∆AA and is reset only when the node has
transitioned to the Maintain state and remained in that state for at least �∆Precision�, where
∆Precision is the maximum guaranteed self-stabilization precision.  The Local_Timer is
intended to be used by higher level protocols and is used in assessing the state of the
system in the self-stabilization process.

The monitor’s status reflects its perception of its corresponding source node.  In
particular, a monitor keeps track of the incoming messages from its corresponding source
and ensures that only valid messages are stored.  This protocol is expected to be used as
the fundamental mechanism in bringing and maintaining a system within a known
synchronization bound.  This protocol neither maintains a history of past behavior of the
nodes nor does it attempt to classify the nodes into good and faulty ones.  All such
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determination about the health status of the nodes in the system is assumed to be done by
higher level mechanisms.

3.3 Message Sequence

An expected sequence is defined as a stream of Affirm messages enclosed by two Resync
messages where all received messages arrive within their expected arrival times.  The time
interval between the last two Resync messages is represented by ∆RR.  As described earlier,
starting from the last transmission of the Resync message consecutive Affirm messages are
transmitted at ∆AA intervals.  At the receiving nodes, the following definitions hold:
– A message (Resync or Affirm) from a given source is valid if it is the first message

from that source.
– An Affirm message from a given source is early if it arrives earlier than (∆AA - d) of its

previous valid message (Resync or Affirm).
– A Resync message from a given source is early if it arrives earlier than ∆RR,min of its

previous valid Resync message.
– An Affirm message from a given source is valid if it is not early.
– A Resync message from a given source is valid if it is not early.

The protocol works when the received messages do not violate their timing
requirements.  However, in addition to inspecting the timing requirements, examining the
expected sequence of the received messages provides stronger error detection at the nodes.

3.4 Protocol Functions

Two functions, InvalidAffirm() and InvalidResync(), are used by the monitors. The
InvalidAffirm() function determines whether or not a received Affirm message is valid.
The InvalidResync() function determines if a received Resync message is valid. When
either of these functions returns a true value, it is indicative of an unexpected behavior by
the corresponding source node.

The Accept() function is used by the state machine of the node in conjunction with the
threshold  value TA = G - 1.  When at least TA valid messages (Resync or Affirm) have been
received, this function returns a true value indicating that an accept event has occurred
and such event has also taken place in at least F other good nodes.  When a node accepts,
it consumes all valid messages used in the accept process by the corresponding function.
Consumption of a message is the process by which a monitor is informed that its stored
message, if it existed and was valid, has been utilized by the state machine.

The Retry() function is used by the state machine of the node with the threshold value
TR = F +1.  This function determines if at least TR other nodes have transitioned out of the
Maintain state.  A node, via its monitors, keeps track of the current state of other nodes.
When at least TR valid Resync messages from as many nodes have been received, this
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function returns a true value indicating that at least one good node has transitioned to the
Restore state.  This function is used to transition from the Maintain state to the Restore
state.

The TransitoryConditionsMet() function is used by the state machine of the node to
determine proper timing of the transition from the Restore state to the Maintain state.
This function keeps track of the accept events, by incrementing the
Accept_Event_Counter, to determine if at least 2F accept events in as many ∆AA intervals
have occurred.  It returns a true value when the transitory conditions (Section 3.2) are
met.

The TimeOutRestore() function uses PT as a boundary value and asserts a timeout
condition when the value of the State_Timer has reached PT.  Such timeout triggers the
node to reengage in another round of self-stabilization process.  This function is used
when the node is in the Restore state.

The TimeOutMaintain() function uses PM as a boundary value and asserts a timeout
condition when the value of the State_Timer has reached PM.  Such timeout triggers the
node to reengage in another round of synchronization.  This function is used when the
node is in the Maintain state.

In addition to the above functions, the state machine utilizes the TimeOutAcceptEvent()
function.  This function is used to regulate the transmission time of the next Affirm
message.  This function maintains a DeltaAA_Timer by incrementing it once per local
clock tick and once it reaches the transmission time of the next Affirm message, ∆AA, it
returns a true value.  In the advent of such timeout, the node transmits an Affirm message.

3.5 System Assumptions

1. The source of the transient faults has dissipated.
2. All good nodes actively participate in the self-stabilization process and execute the

protocol.
3. At most F of the nodes are faulty.
4. The source of a message is distinctly identifiable by the receivers from other sources

of messages.
5. A message sent by a good node will be received and processed by all other good

nodes within ∆AA, where ∆AA ≥ (D + d).
6. The initial values of the state and all variables of a node can be set to any arbitrary

value within their corresponding range.  In an implementation, it is expected that
some local capabilities exist to enforce type consistency of all variables.

9



3.6 The Self-Stabilizing Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are with
respect to a real time t0 when the system assumptions are satisfied and the system operates
within the system assumptions.  Let

• C be the maximum convergence time,
• ∆Local_Timer(t), for real time t, the maximum time difference of the Local_Timers of

any two good nodes Ni and Nj, and
• ∆Precision the maximum guaranteed self-stabilization precision between the

Local_Timer’s of any two good nodes Ni and Nj in the presence of a maximum of
F faulty nodes, ∀ Ni, Nj ∈ KG.

Convergence:  From any state, the system converges to a self-stabilized state after a finite
amount of time.

1. Ni, Nj ∈ KG, ∆Local_Timer(C) ≤ ∆Precision.
2. ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain state.

Closure:  When all good nodes have converged to a given self-stabilization precision,
∆Precision, at time C, the system shall remain within the self-stabilization precision ∆Precision

for t ≥ C, for real time t.
∀ Ni, Nj ∈ KG, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision,

where,
C = (2PT + PM) ∆AA,
∆Local_Timer(t) =   min ( max (Local_Timeri, Local_Timerj) –

min (Local_Timeri, Local_Timerj),
max (Local_Timeri - �∆Precision�

 th, Local_Timerj - �∆Precision�
 th)

min (Local_Timeri - �∆Precision�
 th, Local_Timerj - �∆Precision�

 th)),

min() and max() are absolute differences,
�∆Precision� = truncate (∆Precision + 0.5),
(Local_Timer - �∆Precision�

 th) is the �∆Precision�
th previous value of the Local_Timer,

∆Precision = (3F - 1) ∆AA - D + ∆Drift,

and the amount of drift from the initial precision is given by
∆Drift = ((1+ρ) - 1/(1+ρ)) PM ∆AA.
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4 The Byzantine-Fault Tolerant Self-Stabilizing Protocol for
Distributed Clock Synchronization Systems

The presented protocol is described in Figure 5 and consists of a state machine and a set
of monitors which execute once every local oscillator tick.

Fig. 5.   The self-stabilization protocol.

Monitor:
case (incoming message from the
corresponding node)
{Resync:

if InvalidResync() then
Invalidate the message

else
Validate and store the message,
Set state status of the source.

Affirm:
if InvalidAffirm() then

Invalidate the message
else

Validate and store the message.
Other:

Do nothing.

} // case

Node:
case (state of the node)
{Restore:

if TimeOutRestore() then
Transmit Resync message,
Reset State_Timer,
Reset DeltaAA_Timer,
Reset Accept_Event_Counter,

Stay in Restore state,

elsif TimeOutAcceptEvent() then
Transmit Affirm message,
Reset DeltaAA_Timer,
if Accept() then

Consume valid messages,
Clear state status of the sources,
Increment Accept_Event_Counter,
if TransitoryConditionsMet() then

Reset State_Timer,
Go to Maintain state,

else
Stay in Restore state.

else
Stay in Restore state.,

else
Stay in Restore state.

Maintain:
if TimeOutMaintain() or Retry() then

Transmit Resync message,
Reset State_Timer,
Reset DeltaAA_Timer,
Reset Accept_Event_Counter,
Go to Restore state,

elsif TimeOutAcceptEvent() then
if Accept() then

Consume valid messages.,
if (State_Timer = �∆Precision�)

Reset Local_Timer.,
Transmit Affirm message,
Reset DeltaAA_Timer,
Stay in Maintain state,

else
Stay in Maintain state.

} // case
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Semantics of the pseudo-code:
• Indentation is used to show a block of sequential statements.
• ‘,’ is used to separate sequential statements.
• ‘.’ is used to end a statement.
• ‘.,’ is used to mark the end of a statement and at the same time to separate it from

other sequential statements.

5 Proof of the Protocol

The approach for the proof is to show that a system of K ≥ 3F + 1 nodes converges from
any condition to a state where all good nodes are in the Maintain state.  This system is
then shown to remain within the timing bounds of the self-stabilization precision of
∆Precision.  A sketch of the proof of the protocol is presented here.  Details of the proof are
documented in [14].

Assumptions: All good nodes are active and the system operates within the system
assumptions.  In this proof, unless otherwise stated in the Lemmas and Theorems, no
other assumptions are made about the system.

A node behaves properly if it executes the protocol.

Theorem ResyncWithinPT – A good node remaining in the Restore state transmits
a Resync message within at most PT ∆AA clock ticks.

Lemma DeltaRRmin – The shortest time interval between any two consecutive Resync
messages from a good node is 2F∆AA + 1 clock ticks.

Theorem RestoreToMaintain – A good node in the Restore state will always
transition to the Maintain state.

From Theorem RestoreToMaintain, the maximum possible transitory delay for a node
in the Restore state is 8F∆AA.  However, in order to allow the node to transition to the
Maintain state at the next ∆AA, it has to be prevented from timing out.  Therefore, the
required minimum period, PT,min is constrained to be PT,min = (8F+2) ∆AA.  Although PT can
be any value larger than PT,min, it follows from Theorem RestoreToMaintain that it cannot
exceed that minimum value.  Also, in order to expedite the self-stabilization process, the
convergence time has to be minimized.  Thus, PT is constrained to PT,min.  The self-
stabilization period for  the  Maintain  state, PM, is typically much larger than PT.   Thus,
PM  is  constrained to be PM ≥ PT.
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Corollary RestoreToMaintainWithin2PT – A good node in the Restore state will always
transition to the Maintain state within 2PT.

All good nodes validate an Affirm message from a good node if the minimum arrival
time requirement for that message is not violated.  By Lemma DeltaRRmin, consecutive
Resync messages from a good node are always more than ∆RR,min apart.  Therefore, after a
random start-up, it takes more than ∆RR,min clock ticks for Resync messages from a good
node to be accepted by all other good nodes.  If a node is in the Restore state, from
Theorem ResyncWithinPT, it will either time out and transmit a Resync message within PT

or from Theorem RestoreToMaintain and Corollary RestoreToMaintainWithin2PT, it will
transition to the Maintain state within 2PT.  Therefore, for the proof of this protocol, and
for the following lemmas and theorems, the state of the system is considered after 2PT ∆AA

clock ticks from a random start.  At this point, the system is in one of the following three
states and all messages from the good nodes meet their timing requirements at the
receiving good nodes.

1. None of the good nodes are in the Maintain state
2. All good nodes are in the Maintain state
3. Some of the good nodes are in the Maintain state

Theorem ConvergeNoneMaintain – A system of K ≥ 3F + 1 nodes, where none of the
good nodes are in the Maintain state and have not met the transitory conditions, will
always converge.

The self-stabilization precision, ∆∆∆∆Precision, is the maximum time difference between the
Local_Timer’s of any two good nodes when the system is stabilized.  It is, therefore, the
guaranteed precision of the protocol.  From Theorem ConvergeNoneMaintain, the initial
precision after the resynchronization is determined to be ∆LMEM = (3F - 1) ∆AA - D.  After
the initial synchrony and due to the drift rate of the oscillators, Local_Timers of the good
nodes will deviate from the initial precision.  Therefore, the guaranteed self-stabilization
precision, ∆Precision, after elapsed time of PM ∆AA clock ticks, is bounded by, ∆Precision =
∆LMEM + ∆Drift, where the amount of drift from the initial precision is  given  by ∆Drift =
((1+ρ) - 1/(1+ρ)) PM ∆AA.  The factors (1+ρ) and 1/(1+ρ) are, respectively, associated with
the slowest and fastest nodes in the system.  Therefore, ∆Precision = (3F - 1) ∆AA - D + ∆Drift.

Corollary MutuallyStabilized – All good nodes mutually perceive each other as being
in the Maintain state.

Theorem ConvergeAllMaintain – A system of K ≥ 3F + 1 nodes, where all good nodes
are in the Maintain state, will always converge.
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Theorem ConvergeSomeMaintain – A system of K ≥ 3F + 1 nodes, where some of the
good nodes are in the Maintain state will always converge.

Theorem ClosureAllMaintain – A system of K ≥ 3F + 1 nodes, where all good nodes
have converged such that all good nodes are mutually stabilized with each other (in other
words, all good nodes are in the Maintain state where ∆Local_Timer(t) ≤ ∆Precision), shall
remain within the self-stabilization precision ∆Precision.

Corollary StateTimerLessThanPrecision – In a stabilized system and during the re-
stabilization process, the maximum value of the State_Timer is always less than the self-
stabilization precision ∆Precision.

Therefore, the Local_Timer can be reset at any point where State_Timer is greater than
or equal to the precision.  In order to expedite the self-stabilization process, Local_Timer
is reset when State_Timer reaches the next integer value greater than ∆Precision, i.e.
�∆Precision� = truncate (∆Precision + 0.5).

Theorem LocalTimerWithinPrecision – The difference of Local_Timers  of  all  good
nodes  in  a  stabilized  system  of K ≥ 3F + 1  nodes   will   always   be   within   the   self-
stabilization  precision,  i.e.  ∆Local_Timer(t) ≤ ∆Precision.

Theorem StabilizeFromAnyState – A system of K ≥ 3F + 1 nodes self-stabilizes from any
random state after a finite amount of time.
Proof – The proof of this theorem consists of proving the convergence and
closure properties as defined in the Self-Stabilizing Clock Synchronization Problem
section.

Convergence –  From any state, the system converges to a self-stabilized state after a
finite amount of time.

1. Ni, Nj ∈ KG, ∆Local_Timer(C) ≤ ∆Precision.
2. ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain state.

Proof –  The proof is done in the following four parts:
Convergence – None of the good nodes are in the Maintain state.
Proof –  It follows from Theorems ConvergeNoneMaintain and
ClosureAllMaintain that such system always self-stabilizes.
Convergence – All good nodes are in the Maintain state.
Proof –  It follows from Theorems ConvergeNoneMaintain,
ConvergeAllMaintain and ClosureAllMaintain that such system always self-
stabilizes.
Convergence – Some of the good nodes are in the Maintain state.
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Proof –  It follows from Theorems ConvergeNoneMaintain,
ConvergeAllMaintain, ConvergeSomeMaintain, and ClosureAllMaintain that such
system always self-stabilizes.
Mutually Stabilized –∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain
state.
Proof –  It follows from Corollary MutuallyStabilized that all good nodes
mutually perceive each other to be in the Maintain state.

Closure – When all good nodes have converged such that ∆Local_Timer(C) ≤ ∆Precision, at time
C, the system shall remain within the self-stabilization precision ∆Precision  for t ≥ C, for
real time t.

∀ Ni, Nj ∈ KG, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision.
Proof –  It follows from Theorems ClosureAllMaintain and LocalTimerWithinPrecision
that such system always remains stabilized and ∆Local_Timer(t) ≤ ∆Precision for t ≥ C.            ♦

This protocol neither maintains a history of past behavior of the nodes nor does it
attempt to classify the nodes into good and faulty ones.  Since this protocol self-stabilizes
from any state, initialization and/or reintegration are not treated as special cases.
Therefore, a reintegrating node will always be admitted to participate in the self-
stabilization process as soon as it becomes active.  Continual transmission of the Affirm
messages by the good nodes expedites the reintegration process.

Theorem ConvergeTime – A system of K ≥ 3F + 1 nodes converges from any random
state to a self-stabilized state within C = (2PT + PM) ∆AA clock ticks.

If PM = PT, then C = 3PM, but since typically PM >> PT, therefore, C can be
approximated to C ≅ PM.  Therefore, the convergence time of this protocol is a linear
function of the PM.

6 Achieving Tighter Precision

Since the self-stabilization messages are communicated at ∆AA intervals, if ∆AA, and hence
∆Precision, are larger than the desired precision, the system is said to be Coarsely
Synchronized.  Otherwise, the system is said to be Finely Synchronized.  If the
granularity provided by the self-stabilization precision is coarser than desired, a higher
synchronization precision can be achieved in a two step process.  First, a system from any
initial state has to be Coarsely Synchronized and guaranteed that the system remains
Coarsely Synchronized and operates within a known precision, ∆Precision.  The second step,
in conjunction with the Coarse Synchronization protocol, is to utilize a proven protocol
that is based on the initial synchrony assumptions to achieve optimum precision of the
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synchronized system.  The Coarse Synchronization protocol initiates the start of the Fine
Synchronization protocol if a tighter precision of the system is desired.  The Coarse
protocol maintains self-stabilization of the system while the Fine Synchronization
protocol increases the precision of the system.

7 Conclusions

In this paper, a rapid Byzantine self-stabilizing clock synchronization protocol is
presented that self-stabilizes from any state.  It tolerates bursts of transient failures, and
deterministically converges with a linear convergence time with respect to the self-
stabilization period.  Upon self-stabilization, all good clocks proceed synchronously.  This
protocol has been the subject of a rigorous verification effort.  A 4-node system consisting
of 3 good nodes and one Byzantine faulty node has been proven correct using model
checking.  The proposed protocol explores the timing and event driven facets of the self-
stabilization problem.  The protocol employs monitors to closely observe the activities of
the nodes in the system.  All timing measures of variables are based on the node’s local
clock and thus no central clock or externally generated pulse is used.  The proposed
protocol is scalable with respect to the fundamental parameters, K, D, and d.  The self-
stabilization precision ∆Precision, ∆Local_Timer(t), and self-stabilization periods PT and PM are
functions of K, D and d.  The convergence time is a linear function of PT and PM and
deterministic.  Therefore, although there is no theoretical upper bound on the maximum
values for the fundamental parameters, implementation of this protocol may introduce
some practical limitations on the maximum value of these parameters and the choice of
topology.  Since only two self-stabilization messages, namely Resync and Affirm
messages, are required for the proper operation of this protocol, a single bit suffices to
represent both messages.  Therefore, for a data message w bits wide, the self-stabilization
overhead will be 1/w per transmission.

A sketch of proof of this protocol has been presented in this paper.  This protocol is
expected to be used as the fundamental mechanism in bringing and maintaining a system
within bounded synchrony.  Integration of a higher level mechanism with this protocol
needs to be further studied.  Furthermore, if a higher level secondary protocol is non-self-
stabilizing, it is conjectured that it can be made self-stabilizing when used in conjunction
with the protocol presented here.  We have started formalizing the integration process of
other protocols with this protocol in order to achieve tighter synchronization.  We are also
planning to implement this protocol in hardware and characterize it in a representative
adverse environment.
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